博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
坐下,这些都是二叉树的基本操作!
阅读量:6198 次
发布时间:2019-06-21

本文共 3877 字,大约阅读时间需要 12 分钟。

春招来了,辞了职在家里准备再找份实习工作。相信大家,尤其是大三、大四的同学都经常在招聘要求上看到这样一条要求:熟悉常见的数据结构与算法。常见的数据结构通常有:链表二叉树,如果要求再高点,可能会让你实现红黑树AVL树这种高级的数据结构。由此可见,数据结构与算法还是比较重要的,最近也是在复习这方面的知识。本篇为复习过程中遇到过的总结,同时也给各位跟我一样准备面试的同学一份参考。另外,由于篇幅有限,本篇的重点在于二叉树的常见算法以及实现。

常见的二叉树实现代码

之前写过相关的文章,是关于如何创建及遍历二叉树的,这里不再赘述。提供链接给各位感兴趣的小伙伴,点此

翻转二叉树

对于一棵二叉树,翻转它的左右子树,如下图所示:

下面来分析具体的实现思路:

  • 对于根结点为空的情况
    这种情况需要排除,因为null不是一个对象,不可能存在左右子树并且可以翻转的情况
  • 对于一棵只有一个根结点的二叉树
    emmm,这种情况也可以翻转,因为此时根结点左右子树为null,交换左右子树其实也就是在交换两个null,理论上是翻转了,但实际上我们看到的和没有翻转之前的结果是一样的
  • 对于一棵具有两个或两个以上结点的二叉树,此时二叉树可以表示为如下的图像:

可以看出,无论是只有左子树还是只有右子树都可以进行翻转。这句话等价于,为空的子树可以和不为空的子树进行交换,也就是
不对为空的子树进行特殊处理

分析过程

其实这样我们还是不知道二叉树是如何翻转的,我们可以用第一张图的二叉树为例子,看一下翻转的具体过程。

  1. 首先我们需要对根结点进行判空处理,在根结点不为空的情况下存在左右子树(即使左右子树为空),然后交换左右子树;

2. 把根结点的左子树当成左子树的根结点,对当前根结点进行判空处理,不为空时交换左右子树;

3. 把根结的右子树当成右子树的根结点,对当前根结点进行判空处理,不为空时交换左右子树;

4. 重复步骤
2
3,最后二叉树变为原来的镜像结构,结果可以参考文章第一张示意图。

示例代码

根据上面的推理过程我们可以得出如下的代码:

function reverseTree(root){    if( root !== null){        [root.left, root.right] = [root.right, root.left]        reverseTree(root.left)        reverseTree(root.right)    }}复制代码

虽然推理过程比较复杂(也可能是写的比较啰嗦。。),但是仔细观察代码,这和遍历的代码似乎也没多大差别,只是把输出结点变为了交换结点。

判断二叉树是否完全对称

一棵左右完全对称的二叉树是这样的:

那到底如何判断呢?

  • 根结点为空时,此时为一棵空二叉树,满足对称条件(-_-||)
  • 只有一个根结点时,左右子树都为null,满足左右对称条件
  • 只有两个结点时,此时左右子树必定有一个为空,不可能存在对称的情况
  • 结点数在三个及三个以上时,二叉树有对称的可能。

按照我们正常的思维,看对称与否,首先看左边,然后看右边,最后比较左右是否相等。同时我们注意到,在二叉树深度比较大的时候,我们光是比较左右是不够的。可以观察到,我们比较完左右以后还需要比较左的左右的右,比较左的右右的左

分析过程

这么看是比较绕,接下来我们来看图分析:

  1. 先比较根结点左右孩子
  2. 左子树根结点的左孩子右子树根结点的右孩子进行比较
  3. 左子树根结点的右孩子右子树根结点的左孩子进行比较
  4. 重复以上过程...

示例代码

function isSymmetrical(pRoot){    // write code here    if(!pRoot){        return true    }    return funC(pRoot.left, pRoot.right)} function funC(left, right){         if(!left){        return right === null    }         if(!right){        return false    }         if(left.val !== right.val){        return false    }         return funC(left.right, right.left) && funC(left.left, right.right)}复制代码

求二叉树的深度

分析过程

  • 只有一个根结点时,二叉树深度为1
  • 只有左子树时,二叉树深度为左子树深度加1
  • 只有右子树时,二叉树深度为右子树深度加1
  • 同时存在左右子树时,二叉树深度为左右子树中深度最大者加1

示例代码

function deep(root){    if(!root){        return 0    }    let left = deep(root.left)    let right = deep(root.right)    return left > right ? left + 1 : right + 1}复制代码

求二叉树的宽度

二叉树的宽度是啥?我把它理解为具有最多结点数的层中包含的结点数,比如下图所示的二叉树,其实它的宽度就是为4:

分析过程

根据上图,我们如何算出二叉树的宽度呢?其实有个很简单的思路:

  1. 算出第一层的结点数,保存
  2. 算出第二层的结点数,保存一二层中较大的结点数
  3. 重复以上过程

示例代码

根据分析过程,我们可以利用队列这种数据结构来实现这个算法,代码如下:

function width(root){    if(!root){        return 0    }    let queue = [root], max = 1, deep = 1    while(queue.length){        while(deep--){            let temp = queue.shift()            if(temp.left){                queue.push(temp.left)            }            if(temp.right){                queue.push(temp.right)            }        }        deep = queue.length        max = max > deep ? max : deep    }    return max}复制代码

重建二叉树

常见的遍历

  • 前序遍历: 前序遍历首先访问根结点然后遍历左子树,最后遍历右子树

  • 中序遍历: 中序遍历首先访问左子树然后遍历根节点,最后遍历右子树

  • 后序遍历: 后序遍历首先遍历左子树,然后遍历右子树,最后访问根结点

题目描述

根据前序遍历产生的序列和中序遍历产生的序列生成一颗二叉树

思路分析

假如有这么一棵二叉树:

可以看出它
前序遍历序列为:
8 6 5 7 10 9 11
中序遍历序列为:
5 6 7 8 9 10 11 其中有个很明显的特征,根结点的值为
前序遍历序列的第一个值,而且我们在
中序遍历序列中很容易看出,根结点左右两边的结点分别为构成
左子树
右子树的结点,所以我们可以得到一种解决问题的思路:

  1. 获取前序遍历的第一个值,构建根结点
  2. 生成左子树的前序遍历序列和中序遍历序列
  3. 生成右子树的前序遍历序列和中序遍历序列
  4. 重复以上过程...

示例代码

function reConstructBinaryTree(pre, vin){    if(!pre || !vin || !pre.length || !vin.length){        return null    }    let root = new TreeNode(pre[0]),        tIndex = vin.indexOf(pre[0]),        leftIn = [],leftPre = [],rightIn = [],rightPre = []        for(let i = 0; i < tIndex; i++){        leftIn.push(vin[i])        leftPre.push(pre[i+1])    }    for(let i = tIndex+1; i < pre.length; i++){        rightIn.push(vin[i])        rightPre.push(pre[i])    }    //递归    root.left = reConstructBinaryTree(leftPre, leftIn)    root.right = reConstructBinaryTree(rightPre, rightIn)    return root}复制代码

以上思路、代码有错漏请在评论区指出!

总结

代码部分来自,相应的题目也都可以在上面找到。不过在这期间,我也是找到了份实习工作,年后就要去搬砖了。既然找到了,春招就不参与了(春招难度比秋招难太多了)希望看这篇文章的同学们也能找到份合适的工作。

转载地址:http://nbnca.baihongyu.com/

你可能感兴趣的文章
投币从容:以太坊要归零?
查看>>
iOS知识点个人归纳总结--视图层相关
查看>>
Babel 7 项目升级实战
查看>>
webpack打包工具介绍
查看>>
用python自制微信机器人,定时发送天气预报
查看>>
Chrome插件开发入门:如何实现一键上班赖皮
查看>>
Anko 中使用 CardView 出现的坑
查看>>
移动端配适与掌握动态 REM
查看>>
【FFmpeg笔记】 从零开始之滤镜
查看>>
WebRTC录音功能 | 掘金技术征文
查看>>
FFmpeg常用命令
查看>>
js单击图片刷新验证码_无需整理
查看>>
spark streaming和kafka整合,保证数据exactly-once有且只被处理一次
查看>>
Linux用户、用户组、权限详解
查看>>
ubuntu下安装卸载mysql
查看>>
CentOS7.4 终端静默安装 Oracle 11g R2
查看>>
DPM 2010 备份操作
查看>>
Spring Boot自定义错误页面,Whitelabel Error Page处理方式
查看>>
Servlet 3.0 新特性详解
查看>>
记录这几天挖的一个坑
查看>>